由于长距离,照明变化,有限的用户合作和移动科目,虹膜分割和定位在不受约束环境中具有挑战性。为了解决这个问题,我们介绍了一个U-Net,具有预先培训的MobileNetv2深神经网络方法。我们使用MobileNetv2的预先训练的权重,用于想象成数据集,并在虹膜识别和本地化域上进行微调。此外,我们推出了一个名为Kartalol的新数据集,以更好地评估虹膜识别方案中的检测器。为了提供域适应,我们可以在Casia-Iris-Asia,Casia-Iris-M1和Casia-Iris-Africa和Casia-Iris-Africa和我们的数据集中微调MobileNetv2模型。我们还通过执行左右翻转,旋转,缩放和亮度来增强数据。我们通过迭代所提供的数据集中的图像来选择二进制掩码的二值化阈值。沿着Kartalol DataSet,Casia-Iris-Asia,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1,Casia-Iris-M1培训。实验结果强调了我们的方法在基于移动的基准上超越了最先进的方法。代码和评估结果在https://github.com/jalilnkh/kartalol-nir -isl2021031301上公开可用。
translated by 谷歌翻译
为偏置场校正和磁共振归一化问题提出了空间正则化的高斯混合模型LAPGM。提出的空间正常化程序为从业者提供了平衡偏置磁场去除和保存图像对比度之间的微调控制,以提供多序列的磁共振图像。LAPGM的拟合高斯参数用作控制值,可用于在不同的患者扫描中标准化图像强度。将LAPGM与单个和多序列设置中的众所周知的词汇算法N4ITK进行了比较。作为一种归一化程序,将LAPGM与已知技术(例如:最大归一化,Z得分归一化和水掩模的利益区域归一化)进行比较。最后,由作者提供了cuda加速python软件包$ \ texttt {lapgm} $。
translated by 谷歌翻译
线性状态空间模型(SSM)的状态过渡矩阵的适当参数化,然后是标准非线性,使他们能够从顺序数据中有效地学习表示形式,从。在本文中,我们表明,当线性液体时恒定(LTC)状态空间模型给出诸如S4之类的结构SSM时,我们可以进一步改善。 LTC神经网络是带有输入依赖性状态过渡模块的因果连续神经网络,这使他们学会在推理时适应传入的输入。我们表明,通过使用对角和S4中引入的状态过渡矩阵的对角线加低级分解以及一些简化的基于LTC的结构状态空间模型(称为Liquid-S4)实现了新的最新最先进的最先进跨序列建模任务具有长期依赖性(例如图像,文本,音频和医疗时间序列)的艺术概括,在远程竞技场基准中的平均性能为87.32%。在完整的原始语音命令识别中,数据集Liquid-S4的精度达到96.78%,与S4相比,参数计数降低了30%。性能的额外增益是液体-S4的核结构的直接结果,该结构考虑了训练和推理过程中输入序列样本的相似性。
translated by 谷歌翻译
我们提出了一种在多孔培养基中使用物理知识的神经网络(PINNS)中多相热力学(THM)过程中的参数鉴定的解决方案策略。我们采用无量纲的理事方程式,特别适合逆问题,我们利用了我们先前工作中开发的顺序多物理Pinn求解器。我们在多个基准问题上验证了所提出的反模型方法,包括Terzaghi的等温固结问题,Barry-Mercer的等温注射产生问题以及非饱和土壤层的非等热整合。我们报告了提出的顺序PINN-THM逆求器的出色性能,从而为将PINNS应用于复杂非线性多物理问题的逆建模铺平了道路。
translated by 谷歌翻译
气候变化增加了损害电力系统可靠性并导致多次设备故障的极端天气事件(风暴,大雨,野火)的数量。实时和准确检测潜在线路故障是减轻极端天气影响并激活紧急控制的第一步。功率平衡方程非线性,极端事件中的发电不确定性增加,缺乏电网可观察性会损害传统数据驱动的失败检测方法的效率。同时,基于神经网络的现代化的机器学习方法需要大量数据来检测事故,尤其是在改变时间的环境中。本文提出了一个具有物理信息的线路故障检测器(字段),该探测器利用网格拓扑信息来减少样本和时间复杂性并提高定位准确性。最后,我们说明了与最先进的方法相比,与各种测试用例相比,我们的方法的优越性实证性能。
translated by 谷歌翻译
持续学习 - 从一系列学习经验中积累知识 - 是一个重要但充满挑战的问题。在此范式中,由于看到其他数据,该模型的先前遇到实例的性能可能会大大下降。在处理类不平衡数据时,忘记进一步加剧了。先前的工作提出了基于重播的方法,旨在通过智能存储未来重播的实例来减少遗忘。尽管类平衡储层抽样(CBRS)在处理不平衡数据方面已经成功,但尚未考虑类内的多样性,隐含地假设类的每个实例都同样有用。我们提出了不同的cbrs(D-CBRS),这是一种算法,使我们可以在存储内存中的实例时在类多样性中考虑。我们的结果表明,D-CBR的表现优于最先进的存储器管理在具有相当大的内部多样性的数据集上的持续学习算法。
translated by 谷歌翻译
内核岭回归(KRR)最近引起了新的兴趣,因为它可以解释在神经网络训练期间出现的瞬态效应,例如双重下降。在这项工作中,我们研究目标函数与内核之间的对齐方式如何影响KRR的性能。我们专注于截短的KRR(TKRR),该KRR(TKRR)利用一个控制核矩阵的光谱截断的附加参数。我们表明,对于多项式对齐,有一个\ emph {过度对准}制度,其中TKRR可以实现比Full KRR可以实现的要快的速度。 TKRR的速率可以一直提高到参数速率,而全krr的速率则以亚最佳值的限制。这表明,通过在内核方法中利用光谱截断,可以更好地利用目标alignemnt。我们还考虑了带有限制的对准设置,并表明TKRR的正则化表面可以表现出瞬态效应,包括多个下降和非单调行为。我们的结果表明,\ emph {对齐谱}的形状与内核方法的概括性能之间存在很强的关系,无论是在速率和有限样品方面。
translated by 谷歌翻译
班级学习(CIL)遭受了学习新添加的课程和保留先前学习的课堂知识之间臭名昭著的困境。通过存储重播的历史数据可以减轻灾难性的遗忘问题,这会导致内存开销以及预测更新。为了解决这一难题,我们建议在持续学习中利用“免费”外部未标记的数据查询。我们首先提出了一个带有查询的未标记数据(CIL-QUD)方案的CIL,其中我们仅存储一些过去的训练样本作为锚点,并每次都使用它们来查询相关的未标记示例。除了新的和过去存储的数据外,通过学习 - 验证(LWF)正规化器和班级平衡培训,有效地利用了查询未标记的未标记。除了保留对过去和当前任务的模型概括外,我们下一步研究CIL-QUD的对抗性鲁棒性问题。受到未标记的数据学习强大模型的成功启发,我们探索了一种新的鲁棒性感知的CIL设置,在此设置中,随着新任务不断出现,学习的对手鲁棒性必须抵制遗忘并被转移。尽管现有的选项很容易失败,但我们显示了查询的未标记数据可以继续受益,并无缝将CIL-QUD扩展到其可靠的版本RCIL-QUD中。广泛的实验表明,与以前的最新CIL方法相比,CIL-QUD在CIFAR-10和CIFAR-100上实现了可观的准确性。此外,Rcil-Qud确立了鲁棒性意识CIL的第一个强大里程碑。代码可在https://github.com/vita-group/cil-qud中找到。
translated by 谷歌翻译
我们介绍并研究了分布的邻居晶格分解,这是有条件独立性的紧凑,非图形表示,在没有忠实的图形表示的情况下是有效的。这个想法是将变量的一组社区视为子集晶格,并将此晶格分配到凸sublattices中,每个晶格都直接编码有条件的独立关系集合。我们表明,这种分解存在于任何组成型绘画中,并且可以在高维度中有效且一致地计算出来。 {特别是,这给了一种方法来编码满足组合公理的分布所隐含的所有独立关系,该分布严格比图形方法通常假定的忠实假设弱弱。}我们还讨论了各种特殊案例,例如图形模型和投影晶格,每个晶格都有直观的解释。一路上,我们看到了这个问题与邻域回归密切相关的,该回归已在图形模型和结构方程式的背景下进行了广泛的研究。
translated by 谷歌翻译
Edge Computing通过同时且连续执行延迟敏感的机器学习(ML)应用程序来启用智能物联网的系统。这些基于边缘的机器学习系统通常是电池供电的(即能量限制的)。他们使用具有不同计算性能的异质资源(例如CPU,GPU和/或FPGA)来满足ML应用程序的延迟约束。面临的挑战是,就这些系统的能量和延迟约束分配了在异质边缘计算系统(HEC)上对不同ML应用程序的请求。为此,我们研究和分析资源分配解决方案,这些解决方案可以在考虑能量限制的同时增加准时任务完成率。重要的是,我们研究了边缘友好的(轻巧)多目标映射启发式方法,这些启发式启发式方法不会偏向于特定的应用程序类型以实现目标;取而代之的是,启发式方法在其映射决策中考虑了同一ML应用程序中的“公平性”。绩效评估表明,根据潜伏期和能源目标,尤其是在低至中等请求的到达率方面,提出的启发式胜诉率优于异质系统中广泛使用的启发式方法。我们观察到准时任务完成率提高了8.9%,节能提高了12.6%,而没有在边缘系统上施加任何明显的开销。
translated by 谷歌翻译